1. Try

seed = 0 # any number you want
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

2. More strictly,

seed = 0  # any number you want
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

#References

https://pytorch.org/docs/stable/notes/randomness.html
https://discuss.pytorch.org/t/random-seed-initialization/7854/17
https://discuss.pytorch.org/t/how-to-get-deterministic-behavior/18177/11

'LANGUAGE > PyTorch' 카테고리의 다른 글

BiLSTM  (0) 2019.08.01
PyTorch Examples  (0) 2019.08.01
Difference between model.eval() and torch.no_grad()  (0) 2019.07.15
Hide/Disable TensorFlow Debugging Information (Message)  (0) 2019.07.12
How to use TensorBoard for PyTorch?  (0) 2019.07.12

+ Recent posts